使用X光片级注释(是或否疾病)和细粒病变级注释(病变边界框)开发了两个DL模型,分别为Chexnet和ChexDet。在测试集(n = 2,922)中比较了模型的内部分类性能和病变定位性能,在NIH-Google(n = 4,376)和Padchest(n = 24,536)数据集上比较了外部分类性能,以及外部病变的本地化性能性能在NIH-Chestx-Ray14数据集(n = 880)上进行了比较。还将模型与内部测试集子集的放射学家进行了比较(n = 496)。鉴于足够的训练数据,这两个模型都与放射科医生相当。 CHEXDET对外部分类有了显着改善,例如在NIH-Google上分类(ROC曲线下的ChexDet区域[AUC]:0.67:Chexnet AUC:0.51; P <.001)和PadChest(ChexDet AUC:0.78,Chexnet AUC,Chexnet AUC,Chexnet AUC,Chexnet auc:chexnet auc auc:chexnet auc auc auc:0.78,chexnet auc auc: :0.55; p <.001)。对于所有数据集的大多数异常,例如在内部集合中检测气胸(Chexdet Jacknife替代自由响应ROC的功绩[JAFROC-FOM]:0.87,0.87,CHEXNET JAFROC-FOM:0.113) ; p <.001)和NIH-Chestx-Ray14(Chexdet Jafroc-fom:0.55,Chexnet Jafroc-fom:0.04; p <.001)。总结,细粒的注释克服了快捷方式学习并启用了DL模型,以识别正确的病变模式,从而改善模型的概括性。
translated by 谷歌翻译
In natural language understanding (NLU) production systems, users' evolving needs necessitate the addition of new features over time, indexed by new symbols added to the meaning representation space. This requires additional training data and results in ever-growing datasets. We present the first systematic investigation of this incremental symbol learning scenario. Our analysis reveals a troubling quirk in building broad-coverage NLU systems: as the training dataset grows, performance on the new symbol often decreases if we do not accordingly increase its training data. This suggests that it becomes more difficult to learn new symbols with a larger training dataset. We show that this trend holds for multiple mainstream models on two common NLU tasks: intent recognition and semantic parsing. Rejecting class imbalance as the sole culprit, we reveal that the trend is closely associated with an effect we call source signal dilution, where strong lexical cues for the new symbol become diluted as the training dataset grows. Selectively dropping training examples to prevent dilution often reverses the trend, showing the over-reliance of mainstream neural NLU models on simple lexical cues. Code, models, and data are available at https://aka.ms/nlu-incremental-symbol-learning
translated by 谷歌翻译
This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Patients take care of what their teeth will be like after the orthodontics. Orthodontists usually describe the expectation movement based on the original smile images, which is unconvincing. The growth of deep-learning generative models change this situation. It can visualize the outcome of orthodontic treatment and help patients foresee their future teeth and facial appearance. While previous studies mainly focus on 2D or 3D virtual treatment outcome (VTO) at a profile level, the problem of simulating treatment outcome at a frontal facial image is poorly explored. In this paper, we build an efficient and accurate system for simulating virtual teeth alignment effects in a frontal facial image. Our system takes a frontal face image of a patient with visible malpositioned teeth and the patient's 3D scanned teeth model as input, and progressively generates the visual results of the patient's teeth given the specific orthodontics planning steps from the doctor (i.e., the specification of translations and rotations of individual tooth). We design a multi-modal encoder-decoder based generative model to synthesize identity-preserving frontal facial images with aligned teeth. In addition, the original image color information is used to optimize the orthodontic outcomes, making the results more natural. We conduct extensive qualitative and clinical experiments and also a pilot study to validate our method.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Explainability of Graph Neural Networks (GNNs) is critical to various GNN applications but remains an open challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a trade-off between the two. To search for the most necessary and sufficient explanation, the Probability of Necessity and Sufficiency (PNS) can be applied since it can mathematically quantify the necessity and sufficiency of an explanation. Nevertheless, the difficulty of obtaining PNS due to non-monotonicity and the challenge of counterfactual estimation limits its wide use. To address the non-identifiability of PNS, we resort to a lower bound of PNS that can be optimized via counterfactual estimation, and propose Necessary and Sufficient Explanation for GNN (NSEG) via optimizing that lower bound. Specifically, we employ nearest neighbor matching to generate counterfactual samples for the features, which is different from the random perturbation. In particular, NSEG combines the edges and node features to generate an explanation, where the common edge explanation is a special case of the combined explanation. Empirical study shows that NSEG achieves excellent performance in generating the most necessary and sufficient explanations among a series of state-of-the-art methods.
translated by 谷歌翻译
Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images. Spatial-domain information has been widely exploited to implement image SR, so a new trend is to involve frequency-domain information in SR tasks. Besides, image SR is typically application-oriented and various computer vision tasks call for image arbitrary magnification. Therefore, in this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network. First, we statistically analyze LR-HR image pairs of several datasets under different scale factors and find that the high-frequency spectra of different images under different scale factors suffer from different degrees of degradation, but the valid low-frequency spectra tend to be retained within a certain distribution range. Then, based on this finding, we devise an adaptive scale-aware feature division mechanism using deep reinforcement learning, which can accurately and adaptively divide the frequency spectrum into the low-frequency part to be retained and the high-frequency one to be recovered. Finally, we design a scale-aware feature recovery module to capture and fuse multi-level features for reconstructing the high-frequency spectrum at arbitrary scale factors. Extensive experiments on public datasets show the superiority of our method compared with state-of-the-art methods.
translated by 谷歌翻译
Artificial Intelligence (AI) systems have been increasingly used to make decision-making processes faster, more accurate, and more efficient. However, such systems are also at constant risk of being attacked. While the majority of attacks targeting AI-based applications aim to manipulate classifiers or training data and alter the output of an AI model, recently proposed Sponge Attacks against AI models aim to impede the classifier's execution by consuming substantial resources. In this work, we propose \textit{Dual Denial of Decision (DDoD) attacks against collaborative Human-AI teams}. We discuss how such attacks aim to deplete \textit{both computational and human} resources, and significantly impair decision-making capabilities. We describe DDoD on human and computational resources and present potential risk scenarios in a series of exemplary domains.
translated by 谷歌翻译
In this work, we propose a semantic flow-guided two-stage framework for shape-aware face swapping, namely FlowFace. Unlike most previous methods that focus on transferring the source inner facial features but neglect facial contours, our FlowFace can transfer both of them to a target face, thus leading to more realistic face swapping. Concretely, our FlowFace consists of a face reshaping network and a face swapping network. The face reshaping network addresses the shape outline differences between the source and target faces. It first estimates a semantic flow (i.e., face shape differences) between the source and the target face, and then explicitly warps the target face shape with the estimated semantic flow. After reshaping, the face swapping network generates inner facial features that exhibit the identity of the source face. We employ a pre-trained face masked autoencoder (MAE) to extract facial features from both the source face and the target face. In contrast to previous methods that use identity embedding to preserve identity information, the features extracted by our encoder can better capture facial appearances and identity information. Then, we develop a cross-attention fusion module to adaptively fuse inner facial features from the source face with the target facial attributes, thus leading to better identity preservation. Extensive quantitative and qualitative experiments on in-the-wild faces demonstrate that our FlowFace outperforms the state-of-the-art significantly.
translated by 谷歌翻译